
 Central Services
 Information Technology office

APPLICATION SECURITY CODING

GUIDELINES

1

 Central Services
 Information Technology office

1.0 Introduction

It is necessary for Application Developers to be able to identify and understand types of
vulnerabilities in existence that place applications at high risk due to programming defects. Special
consideration given to these areas will result in the highest probability of reducing the threat to an
application of being exploited by a programming defect. Though there are many defects in existence
that have security implications, it is generally agreed to that the OWASP Top 10 comprise the
majority of the security breaches that occur.

OWASP TOP 10 web application security vulnerabilities

A1-Injection

Injection flaws, such as SQL, OS, and LDAP injection
occur when untrusted data is sent to an interpreter as
part of a command or query. The attacker’s hostile data
can trick the interpreter into executing unintended
commands or accessing data without proper
authorization.

A2-Broken Authentication and Session
Management

Application functions related to authentication and
session management are often not implemented
correctly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploit other
implementation flaws to assume other users’ identities.

A3-Cross-Site Scripting (XSS)

XSS flaws occur whenever an application takes
untrusted data and sends it to a web browser without
proper validation or escaping. XSS allows attackers to
execute scripts in the victim’s browser which can hijack
user sessions, deface web sites, or redirect the user to
malicious sites.

A4-Insecure Direct Object References

A direct object reference occurs when a developer
exposes a reference to an internal implementation
object, such as a file, directory, or database key. Without
an access control check or other protection, attackers
can manipulate these references to access unauthorized
data.

A5-Security Misconfiguration

Good security requires having a secure configuration
defined and deployed for the application, frameworks,
application server, web server, database server, and
platform. Secure settings should be defined,
implemented, and maintained, as defaults are often
insecure. Additionally, software should be kept up to

2

 Central Services
 Information Technology office

 date.

A6-Sensitive Data Exposure

Many web applications do not properly protect sensitive
data, such as credit cards, tax IDs, and authentication
credentials. Attackers may steal or modify such weakly
protected data to conduct credit card fraud, identity theft,
or other crimes. Sensitive data deserves extra protection
such as encryption at rest or in transit, as well as special
precautions when exchanged with the browser.

A7-Missing Function Level Access

Control

Most web applications verify function level access rights
before making that functionality visible in the UI.
However, applications need to perform the same access
control checks on the server when each function is
accessed. If requests are not verified, attackers will be
able to forge requests in order to access functionality
without proper authorization.

A8-Cross-Site Request Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to
send a forged HTTP request, including the victim’s
session cookie and any other automatically included
authentication information, to a vulnerable web
application. This allows the attacker to force the victim’s
browser to generate requests the vulnerable application
thinks are legitimate requests from the victim.

A9-Using Components with Known
Vulnerabilities

Components, such as libraries, frameworks, and other
software modules, almost always run with full privileges.
If a vulnerable component is exploited, such an attack
can facilitate serious data loss or server takeover.
Applications using components with known
vulnerabilities may undermine application defenses and
enable a range of possible attacks and impacts.

A10-Unvalidated Redirects and

Forwards

Web applications frequently redirect and forward users
to other pages and websites, and use untrusted data to
determine the destination pages. Without proper
validation, attackers can redirect victims to phishing or
malware sites, or use forwards to access unauthorized
pages.

TABLE SOURCE: 2013 OWASP Foundation

3

 Central Services
 Information Technology office

2.0 Application Security Coding Guidelines

The following application coding guidelines should be observed:

• Principle of Least Privilege. Do not require the application to run on the administrator
account. Use coding discipline to determine what privileges are actually necessary and
explicitly grant only those privileges to the non-administrator account upon which the
application runs.

• Principle of Least Trust. Do not trust input provided by external users. Assume that
external systems are insecure.

• Principle of Simplicity. Ensure that security subsystems are manageable and not overly
complicated for users and administrators. Large interfaces and complex solutions run a
higher risk for the existence of security vulnerabilities than small interfaces and simple code.
The more entrance points made available to an application and the more intricate the
application’s functionality, the higher the potential for defects. Some of those defects will be
security related. With respect to security functionality added to an application, it must be
easy to install, configure, and use, or it will be disabled or bypassed.

• Avoid Security Through Obscurity. Assume source code will be inspected by hackers.
Design applications with this in mind. “Secrets” such as hidden fields, path names, etc. may
slow down an attacker but they won’t stay secret forever. Application security based on
“security by obscurity” is destined for failure.

• Avoid a Single Point of Failure. An application should not be designed in such a fashion
that if a single mechanism such as a firewall or an authentication service fails, the entire
application is placed at risk. Another name for this principle is Defense in Depth. If one
mechanism fails, there should be a second mechanism that must be defeated before the
application can be compromised. If the second mechanism fails, there is a third, etc. A DMZ
is an example of not having a single point of failure. If the outer firewall fails, though the
web server may be vulnerable and compromised, the rest of the application and data is
behind a second firewall and is, therefore, still protected.

• Data must be vetted. Inspect every return code from every function call. This includes
system library routines.

• Separation of Services. Dedicate a single service to a single platform. Though it is
tempting from a cost perspective to run multiple services on the same platform doing such
increases the overall complexity of the system and therefore increases the risk of security
vulnerabilities.

• Secure Defaults. Do not enable services by default unless it is absolutely necessary. By
default, things should be disabled unless they are explicitly enabled by a decision. The default

4

 Central Services
 Information Technology office

settings should be the secure mode of operation. Security is not something that should have
to be “turned on,” it should be always present unless explicitly disabled.

• Fail to a secure mode. Ensure that applications, systems, and subsystems fail in a secure
manner. This is called failing closed as opposed to failing open. Code must be written to
verify explicitly what is allowed before allowing it. Do not attempt to check for the cases
where things are disallowed, an event may be missed the application could fail in a non-
secure mode because the failure was not recognized.

5

 Central Services
 Information Technology office

Revision History
Review Date Comments Reviewers Name
April 18, 2016 Draft guidelines Fuad Iddrisu
May 02, 2016 Version 1 Fuad Iddrisu

6

	1.0 Introduction
	2.0 Application Security Coding Guidelines

